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LIQUID CRYSTALS, 1996, VOL. 20, No. 3, 321-330 

Structure of planar solitons in nematic and smectic liquid crystals 
by N. ANDAL and G. S. RANGANATH* 

Raman Research Institute, Bangalore-560080, India 

(Received 6 September 1995; accepted 6 October 1995) 

We have undertaken a theoretical study on the structure of planar solitons in nematic and 
smectic liquid crystals. In nematics we find a soliton solution which can be looked upon as 
an intertwine between two solitons. In a nematic obtained by unwinding a cholesteric and in 
a nematic with very high dielectric anisotropy, we have worked out energetics of solitons. A 
271 soliton in a ferronematic or a smectic C becomes unstable due to the splay bend elastic 
anisotropy. The structures of TC solitons in smectic A and smectic C in the neighbourhood of 
a S,-S, phase transition have also been studied. 

1. Introduction 
In an external electric or magnetic field a liquid crystal 

can adopt a non-singular static director configuration 
such that most of the distortion in the director field is 
confined to a narrow region of space and is stabilized 
by the field. In far off regions the director is in the 
uniform state. In spite of its infinite extent it has a finite 
energy of distortion. Such structures have been termed 
as solitons in liquid crystal literature [ 1,2]. However 
this is different from ‘true’ solitons which are traveling 
solitary waves and which retain their shape and structure 
after pairwise collision. In our paper the term soliton 
will refer to static structures only. In a planar soliton 
the distortion is confined to a wall. Hence it is also 
referred to as a wall. Helfrich walls [3] are good 
examples of this state. 

A lot of effort has gone into finding new planar soliton 
states in liquid crystals, in view of their importance in 
phase transitions and structural instabilities [ 4-91. 
However in all these studies attention has not been paid 
to the following specific situations. 

Effects of elastic anisotropy on the energetics of 
planar solitons that can exist in a nematic obtain- 
ed from magnetic (or electric) unwinding of a 
cholesteric liquid crystal. 
The explicit effects of flexo-electricity and elastic 
anisotropy on the energetics of these topological 
objects in nematics in an electric field. 
Effects of non-planar distortions on planar solitons. 
Evolution of a 2% soliton structure in smectics and 
ferronematics after the onset of instability. 

We address ourselves to these specific situations in 
this paper. In addition we have also commented upon 

*Author for correspondence. 

the structure of 7c solitons near a smectic A (S,)-smectic 
C (S,) phase transition. 

In nematics with negative diamagnetic anisotropy we 
find an out of plane distortion of a planar soliton to 
lead to new types of solitons. In particular they are in 
the nature of combination of two solitons. We call such 
structures intertwined solitons. In a nematic state 
obtained by magnetically or electrically unwinding a 
cholesteric, we find a range of fields over which it is 
possible for a bend soliton to be energetically favourable 
compared to an anti-twist soliton whose twist is opposite 
in sense to that of the parent cholesteric. In nematics, in 
an electric field, with very high dielectric anisotropy a 
flexo electric lattice does not form spontaneously 
[ 10, 111. In such nematics, we find a twist soliton to be 
of lower energy compared to the flexo-electrically stable 
bend soliton. We next work out field and elastic aniso- 
tropy induced instabilities that occur in a 271 splay or 
bend soliton in a ferronematic (FN) or a smectic C (S,-). 
We have also considered the structure of 7c planar 
solitons in the neighbourhood of smectic A (S,) and 
smectic C (S,) transitions. In this problem attention has 
been paid to the order parameter variations associated 
with solitons. 

2. Intertwined solitons 
In nematics with negative diamagnetic anisotropy 

(xa < 0), in a magnetic field H, a topologically permitted 
non-singular solution is a cylindrically symmetric struc- 
ture such that at r = co, the director n is perpendicular 
to H and is along H at r = 0. It may be mentioned that 
n can be either in an all radial or all circular state at 
r = a. Figure 1 (a) shows an all radial structure. We can 
also construct planar solitons in such nematics. In a 
planar soliton the director n is confined to a plane [2] 
and its distortions are predominantly within a wall. 
There are three possible planar solitons. These are 
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322 N. Andal and G. S. Ranganath 

(b) 

Figure 1. (a) All radial splay-bend soliton. (b) The coordinate 
system with reference to which the planar solitons are 
described. 

similar to planar solitons of xa > 0 materials which have 
been studied extensively both theoretically and experi- 
mentally [S-81. Here we refer n and H to a coordinate 
system shown in figure 1 (b). 

Firstly we consider the bend soliton. The director is 
perpendicular to the z axis at z = k co and nx=O 
everywhere. These states are of minimum energy since 
xa < 0 and they can be connected by a continuous bend 
in the director in the y-z plane. The free energy density 
is given by 

K 
2 2 

F = - [(v - n)’ + (V x n ) ~ ]  - (H n)’. (1) 

Here K is the elastic constant in the one constant 

Y x 

approximation. Minimization of the total energy gives 

where 4zz = a2 4/az’. This permits a solution described 
by n, = 0, n, = C O S ~  and n, = sin4 with 

where q = (K/xaH2)’/’. It is shown in figure2(a). This is 
a bend soliton. 

If instead, we consider 4 to vary along x with 4 = 0 
at  x = - a, and 4 = z at x = + co and n, = 0 everywhere, 
we get a twist soliton. This is shown in figure2(b). It is 
described by 

4=2tan-l(exp[;]) and Q=rc/2 (4) 

Finally we can also construct a splay soliton by 
considering 4 = 0 at y = - oc, and 4 = IC at y = + 
with n,=0 everywhere. Here the variations in 4 are 
along the y axis. This is shown in figure2(c). This 
structure is described by 

$=2tan-’(exp[;]) and Q=n/2 .  ( 5 )  

We now consider out of plane distortions in these 
planar solitons i.e. n, = cos 0, ny = sin 0 cos 4 and n, = 

J 

X x Y 

(4 (e)  (0 
Figure 2. n planar solitions (a) bend (b) twist and (c) splay. Figures ( d ) ,  (e) and (f’) refer to the arbitrary out of plane 0 deformations 

that go, respectively, with the bend, twist and splay solitons. 
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Planar solitons in LCs 323 

sin 8 sin 4. The free energy density is given by 

K 
2 F = ~- [(VO)’ + (sin 1 9 ) ~ ( ( V 4 ) ~  - E,(~in$)~)]. (6) 

Here E, = xaH2/K. We consider materials with xa < 0, 
i.e. with negatiave diamagnetic anisotropy. The 
equations of equilibrium are 

V28 = sin 8 cos 8[(V4), - E,(sin 4),] (7) 
and 

V z 4 =  -E2s in~cos~-cot8[2(V8.V~)] .  (8) 

We first deal with the case where 8 and 4 vary along 
z .  Let us consider a director orientation with 4 = 0, 8 = 
8, at z = - a  and 4 = 0 ,  8’8, at z = + c o .  These 
director states are of minimum energy for a field along 
z axis since xa is negative. They can be connected by a 
uniform twist of A8 = (8, - 8,) about z. This is shown 
in figure 2 (d) .  Since this confines the director everywhere 
to a plane perpendicular to the field, its elastic distortion 
is not coupled to the field. Hence left to itself it will 
unwind on its own and go to the uniform state. But 
interestingly in view of (7) and (8) we find that this twist 
in 8 can be coupled to the field through variations in 4. 
Solving these equations numerically yield 8 and 4 vari- 
ations as shown in figures 3 (a) to (d ) .  We find that a x 
bend soliton described by variations in 4 alone is inter- 
twined with a A8 twist soliton described by variations 
in 8 alone. The value of the net twist A8, can be made 
to change continuously from 0 to TI. In figure 3 ( d )  we 
see that a T I  bend soliton is coupled with a x twist 
soliton. The twist per unit length (as given by the slope 
at the centre) in the A8 soliton is seen to increase with 
increasing AO. 

Instead of 4 and 8 variations along z we could have 
considered their variations along x. In this case the 
4 distortion represents a twist configuration (see 
figure2(b)) and 8 distortion represents a splay in the 
director field as shown in figure 2 (e). Hence in this case 
a A0 splay soliton is intertwined with a T I  twist soliton. 
In the same way variations of 4 and 8 along y axis 

lead to splay and bend distortions as shown respectively 
in figure2(c) and figure2(f). In this case a A8 bend 
soliton is intertwined with a x splay soliton. 

Interestingly we find such intertwined soliton states 
only for xa < 0 nematics. We can easily understand this 
because a 8 distortion in the xa > 0 nematics leads to an 
increase in the magnetic energy. 

3. Nematies with a latent lattice symmetry 
In this section we study the effect of a latent lattice 

symmetry on planar solitons in nematics. The soliton 
itself is produced by the dielectric or diamagnetic inter- 
actions with the field. It is very well known [12, 131 
that in a magnetic field applied perpendicular to the 

twist axis and above a threshold H ,  a cholesteric 
becomes a nematic. We call this a nematic with a latent 
lattice. The free energy density of this system is 

L 

Here 4 ,  = a#/az, qo = 2x/P, with P as the pitch and K,, 
is the twist elastic constant. This leads to an equation 
of equilibrium identical to ( 2 )  which permits a x-twist 
and x-anti-twist soliton described respectively by 

with 

A twist soliton (TS) has the same sense of twist as the 
parent cholesteric while the anti-twist soliton (ATS) has 
an opposite sense of twist. The total distortion energies 
of these solitons are given by 

EATS = KZ.2 [(2/t) + q O x l  
and 

For (n/2)qOt > 1 i.e. for H -=c ( ~ 1 / 2 ) q ~ ( K ~ , / x ~ ) ~ ~ ~ ,  the 
energy E,, of a twist soliton becomes negative indicating 
a spontaneous generation of such twist solitons leading 
to a soliton lattice. However for (n;/2)q0t < 1, we have 
the undistorted nematic to be of the lowest energy with 
the ATS having a higher energy compared to the TS. 
An interesting possibility exists in a x a > O  material 
where a bend soliton can connect the same base states 
as that associated with an ATS. These features are shown 
in figure 4. This bend soliton can become energetically 
favourable compared to an ATS. For this to happen the 
net energy of the bend soliton should be lower than that 
of the ATS which leads to the condition 

where is the bend or splay elastic constant. This 
together with the condition (n/2)q0C < 1 for the nematic 
state leads to 

n; (2)”* - 1 < - 2 qo t  < 1. (13) 

Hence for K < 4K,, a bend soliton is favourable com- 
pared to an ATS. However in a given situation this 
occurs only upto a field H‘ above Hc. At H the 
inequality (12 )  is just violated. For H > H ,  the ATS is 
favoured energetically. However, in the one constant 
approximation, in such a nematic a bend soliton is 
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Figure 3. The 0 and 4 profiles associated with an intertwined soliton. The abscissa is in units of z l [  [ E ,  = lo6]. 
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Figure 4. Construction of twist, anti-twist and bend solitons 
in a nematic obtained by unwinding a xa > 0 cholesteric. 
We also show in the figure the process of cholesteric 
unwinding through the formation of a soliton lattice. 
Arrow heads have been used to distinguish a twist from 
an anti-twist. 

always favoured over an ATS. It may be mentioned that 
in a normal nematic a bend soliton always has a higher 
energy than the TS or ATS since K,, < K. 

We now consider flexo-electric effects in a nematic 
with positive dielectric anisotropy E,. For such materials 
if ] F , J  > n3e*,/4K where c* = el - e3, with el and e3 as 
flexoelectric coefficients, it is well known that a spontan- 
eous splay-bend flexo-electric lattice is not possible 
[lo, 111. In such nematics we can construct bend soli- 
tons of opposite bends. These have their flexo-electric 
polarization either along or opposite to the external 
electric field. We consider the bend soliton of lower 
energy. Its flexo polarization is along the external field. 
In view of the above analysis we can again consider a 
twist soliton or an anti-twist soliton in the very same 
geometry. These twist solitons are equally energetic. In 
this case, for the twist state or anti-twist state to be 
more favourable than the bend soliton considered, we 
have to satisfy the inequality 
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Planar solitons in LCs 325 

Since K Z 2  is invariably less than K this inequality is 
sufficient leading to an interesting conclusion that a 
twist soliton is preferred to the energetically permitted 
bend soliton. 

In a nematic obtained by unwinding a cholesteric in 
an electric field, we find a totally different answer. In 
this case, there should be no spontaneous twist, splay 
or bend. Hence, here a flexo-electrically permitted bend 
soliton can be made energetically favourable compared 
to an ATS by satisfying two inequalities. 

and 

For values of E, satisfying (16), the inequality (15) will 
be satisfied only in the range of fields E, < E < E’ as in 
the case of cholesterics. Only then a bend soliton is 
favoured in such a nematic with a very large E,. 

It may be mentioned that in E, or xa negative nematics 
it is not possible to have both bend and twist soliton as 
solutions with the same base states, in a magnetic or an 
electric field alone. However in crossed electric and 
magnetic fields, it is possible to stabilize a bend soliton 
or a twist soliton between the same base states. Since 
their energies can be independently varied by altering 
the strengths of the fields, it is possible to have the 
energy of the bend soliton to be less than the energy of 
an anti-twist soliton. 

In conclusion, unlike the usual nematics, in these 
nematics which have a latent lattice symmetry we find 
some new results. 

4. Stability of a 2n: soliton 
We consider in this section the stability of a 2n; planar 

soliton state. Here inside the wall the director is confined 
to a plane and it turns through 2n. That field induces 
instabilities in a 2n twist soliton has already been pointed 
out by earlier investigators [14, 151. Here we address 
ourselves to 2n splay or bend solitons. 

4.1. Effects of$eld 
In smectic C (S,), in addition to the molecular tilt 

angle 6 made by the director n with the layer normal ( z  
axis), we also have the c vector field, which represents 
the molecular projection on the smectic planes. In the 
presence of a magnetic field H at an angle M to the layer, 
in the xz plane, we can construct a 2n splay or bend 
wall in the c vector field. The tilt director n is such that 
n, = sin 0 cos 4, ny = sin 6 sin 4, and n, = cos 6. The free 
energy density for in plane distortions of c is given by 

F = - (dX)’ - - xaH2 [sin M cos 0 + cos o! sin 6 cos $1’. K 1 
2 2 

(17) 

Here we have ignored the coupling terms which naturally 
exist in S,. The constant K is the elastic constant 
associated with the distortion in the c vector field, and 
xa is the diamagnetic anisotropy. It must be remarked 
in this context that F for an S$ with the field along the 
layers was first worked out by Handschy and Clark 
[ 161. This has been recently extended to Sc in a tilted 
electric field [ 171. We ignore 0 variations in space and 
assume 6 to be small. Minimization of the total energy 
with 4 = d(x) leads to 

lQXx = xaH2 [ ( O  sin a cos a) sin 4 
(18) 

In recent times ferronematic (FN) systems have been 
experimentally realized in the laboratory L 18-21 1. A 
ferronematic is a normal nematic with magnetic grains 
suspended in them. The magnetization of all the grains 
are aligned in the same direction and along n. In view 
of the magnetization M, here also a 2n soliton is a 
natural topological object. In such systems, the free 
energy density for planar distortions in an external 
magnetic field is given by [22] 

+ (e2(cos a)’) sin4 cos 41. 

K 1 
2 

F = Ux)’ - - ~,H’(cos 4)’ - MH cos 4 (19) 

where we have ignored grain segregation. Minimization 
in this case leads to 

&jXx = MH(sin 4) + XaH2(sin 4 cos 4 )  (20) 

which is similar to (18). Equation (18) or equivalently 
(20) is a double sine-Gordon equation which permits a 
2n planar soliton solution in 4 with most of the variation 
confined to a wall. Equations (18) and (20) have to be 
solved to get the respective soliton states. Each of these 
can be cast in the following form: 

(21) 

The stability of a 2n soliton can be studied as a function 
of the ratio @/A). In both FN and S, we find that at 
B = A  the 2n soliton splits into two n solitons. 
Interestingly in FN, after an initial split the separation 
monotonically slowly decreases, as shown in figure 5 ( a )  
while in Sc it monotonically increases as shown in 
figure 5 (b), with increasing values of @ / A ) .  Very similar 
effects can be expected in the case of a 2n twist soliton 
also. It must be remarked that in the case of FN we 
cannot go to very high fields in view of the grain 
migration at high B/A ratio. 

4xx = A sin 4 + B sin 4 cos 4. 

4.2. Effects of elastic anisotropy 
We now consider the effects of splay-bend elastic 

anisotropy on the stability of a 2n; splay or a 2n bend 
soliton. The equation of equilibrium in the presence of 
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3.5 4 

Figure 5. The separation between the two split x solitons due 
to the instability of a 2n: soliton (a) for ferronematics 
[ M = O . O O l G ;  za= 10-6cgs] (b) for Sc in a tilted field 
with tilt angle a = 20” and the molecular tilt 0 = 12”. Here 
6 = A - A,,  where A is the distance between the points at 
which the director is perpendicular to the field and A ,  is 
the value of A for an unsplit 271 soliton. 

elastic anisotropy is given by 

(h) 

Figure6. The director pattern associated with a 2x bend 
soliton (a) before split ( E = O )  and (b)  after split due to 
elastic anisotropy (I: x -0%) [ K 1 ,  z 0.2 x dynes, 
K,,  = dynes and H = lo00 G]. 
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-0.5 0 0.5 

(4 

-1 -0.5 0 0.5 1 
(b) 

4 -  

" 
-1.5 -1 -0.5 0 0.5 1 1.5 

5 

Figure 7. Effects of elastic anisotropy E and field on the structure of a 271 bend-splay soliton in a ferronematic or a Sc in a tilted 
field. (a) and (b) represent the soliton profile with the same B/A, (B/A > 1, [B/A = lo]), but without and with an elastic 
anisotropy that annuls the split. (c) and ( d )  refer to a soliton with the same B/A, (B /A  < 1, [B/A = 0.11) without and with 
elastic anisotropy. Here we see that the elastic anisotropy induces split. The abscissa is in units of x/(. 

Figure 8. The orientation profile associated with (a) king wall and (b) ideal Bloch wall. The abscissa is in units of x/(. [e, = 0.76, 
dynes and za = 0.1 x H = loo0 G, K = cgs]. 
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2.5 

2~ 

1.5r  
8 

where 

- 

K , ,  = splay elastic constant, K,, = bend elastic constant 
and K ,  = ( K ,  , + K33)/2. We find that depending upon 
the sign of e a bend rich 2n soliton splits into two bend 
rich 7c solitons or a splay rich 2n soliton splits into two 
splay rich n solitons. The director pattern of a 2n bend 
soliton shown in figure 6 ( a )  before split ( E  = 0) in 6(b)  
after the split (e # 0). Further, the split due to the field 
is either increased or decreased by the elastic anisotropy 
depending upon the sign of E. In figure7 we show 
these effects. 

5. Structure of n: solitons in smectics 
In  previous discussion of S, we ignored spatial vari- 

ations in 0. However, near an S,4-Sc phase transition 
we have to include gradients in 8 in addition to the 
Landau terms (a/2)02 and (h/4)S4. This has been done 
for a 7[: soliton that is permitted in a field parallel to 
the layers. 

5.1. Smectic C 
In a magnetic field parallel to the smectic planes, + c  

and - c  states which are along and opposite to H are 
equivalent energetically. These two states can be con- 
ncctcd in two different ways. In one case, they get 
connected through a gradual variation of the tilt angle 
0, from - 0, to + 0,. Then it is like an Ising wall since 
the order parameter 8 alone changes, vanishing at the 
centre of the wall. There is no c director distortion i.e. 
no 4 variations associated with such a wall. In the other 
case, a n bend or rc splay soliton connects + c  and -c 
through a gradual variation in q5 from 0 to n. This is 
akin to a Bloch wall. Here we discuss the structure of 
these walls. 

5.1.1. king w d l  
The free energy density in this case is 

K U h 1 
2 2 4 2 

F = ~ (8J2 + - (0)' + - (0)" - - X ~ H ' ( O ) ~ .  (24) 

In the S, phase u < 0 and h is a small positive constant. 
The equation of equilibrium is 

KO,, = O(U - xaH2) + Q 3 b .  (25) 

In figure 8 ( 4 ,  we show 8 variation present in such a 
wall with 0 going from - 0, to + 8,. 

5.1.2. Bloch wall 

and 4 variations, 
The free energy density in this case involves both H 

1 
2 
- XdH2(Q)2(COS 4,' 

Minimization leads to 

KO,, = Q [ u  - ( z a H 2 ( c ~ s  4j2) + (4x)2] + 0 3 h  (27) 

and 

Equations (27) and (28) have been numerically solved. 
We first consider an Ideal Bloch wall with 4 variation 
only. This. however, is not a permitted solution of 

x-4 

Figure 9. 0 and 4 profiles associated with a real .n Bloch wall 
2, [ O ,  = 1.24, H = where 8, is the tilt angle at x = 

lOOOG, K = lO-"dynes, xa = lO-'cgs and a = -0.141. 
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Figure 10. 19 and 4 profiles of an (a) Ising wall and (b) Bloch wall in S,. The abscissa is in units of x/l. [e, x 068,  H = 1000 G, 
K = dynes, xa = 0.1 x cgs and a = 0.541. 

equations (27) and (28). Its 4 profile is shown in 
figure 8 (b). In figure 9 we give the variations in 4 and 6 
associated with a real n Bloch wall which is a solution 
of (27) and (28). It must be remarked that the width of 
an ideal Bloch wall is much greater than the width of 
the real Bloch wall in which 8 and $ are coupled. In 
fact at high fields the width of a real Bloch wall is so 
narrow that it is not possible to distinguish it from the 
Ising wall since + 8 with 4 = 0 is equivalent to - 8 with 
$ = n .  However at low fields we get a Bloch wall of 
considerable width and it is structurally distinguishable 
from the Ising wall. 

5.2. Smectic A 
On the smectic A side of the SA-S, phase transition, 

the coefficient a is. positive and 8 is zero. Hence only 
above a threshold field H, = (a/~,)”*, we get a finite 8. 
In this field induced tilt state we can construct an Ising 
or a Bloch soliton as in S c .  The 0 and 4 profiles for 
such walls are shown in figure 10. In this case Ising and 

Bloch walls become identical at all fields. It is to be 
noticed that at the centre of both Ising and Bloch walls 
9 vanishes. This is not contrary to intuition since at this 
point the magnetic contribution to F vanishes and a is 
positive implying 8 to vanish. In principle differential 
equations (27) and (28) can also permit solutions where 
the 8 does not vanish at the centre of the wall and 4 
going from 0 to TC. But these solutions do not exhibit all 
the essential features of the soliton?. 

One other interesting feature of our calculations in 
both S, and SA is that 8 varies monotonically as x+O. 
This is in contrast to what we find in S, where 0 exhibits 
oscillations [9]. Further it must be emphasized that in 
all the above cases the smectic layer undulations induced 
by the field can be neglected since in thick samples, the 
wavelength of such instabilities is very large compared 
to its amplitude. 

Similar situations arise in the case of S, in a tilted 

7 We thank Sreejith Sukumaran for discussions on this point. 
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field. Here also we can construct a 2n planar soliton. 
The O , $  profiles in these soliton structures are not very 
different from those found for n solitons in a H parallel 
to the layers. 

6. Combination of solitons 
In view of the fact different soliton states are permitted 

in a given geometry, we can think of their simultaneous 
existence or in other words, a smooth topological con- 
nection between the different solitons. This is a well- 
known process in normal nematics where planar solitons 
get connected by Bloch or Nee1 lines [23]. A similar 
exercise leads to some interesting situations in S, and 
xa < 0 nematics. 

In the previous section we found that +c  and -c 
states can be connected through either a Bloch wall or 
an Ising wall. It is therefore possible that in a narrow 
range of parameters, these walls have comparable ener- 
gies. Therefore we postulate, the possible existence of a 
line disclination connecting these two topological walls. 

In x , > O  or e ,>O nematics, obtained from an 
unwinding of a cholesteric, we have two solitons namely 
the bend soliton and the twist or the anti-twist soliton 
connecting the same base states. From the discussions 
presented in ij 3, we find that the ATS and a bend soliton 
can sometimes have comparable energies. Therefore we 
can think of a h line [23] connecting these two planar 
solitons. 

In normal jla < 0 nematics, though h lines do not exist 
we can construct objects combining a planar soliton 
with a radial soliton. From figures 1 (a) and 2(c)  we see 
that in both the splay-bend radial soliton and the splay 
planar soliton the degenerate base states are perpendic- 
ular to the field H at large distances. Hence we can 
think of a combination of these structures as shown in 
figure 11. Here one half of the pattern represents a planar 

+ . . . . . . . . Q ~ _ _ _ _ ~  

/ ' T  T T T T T T T 

H 

Figure 11. Combination of a splay-bend radial soliton with 
a splay-bend planar soliton. At the centre the director n 
is along H which is perpendicular to the plane of the 
figure. The nail heads indicate that the director n is tilted 
out of the plane of the figure. 

splay soliton which gets smoothly connected to half of 
a radial splay-bend soliton. In a similar way, we can 
also combine a twist planar soliton with a bend twist 
circular soliton. 

Finally we consider an unwound cholesteric with 
xa < 0. We may be tempted to construct an intertwined 
soliton in this nematic. However calculations show that 
the 0 profile is not a soliton. The 0 and 4 profiles are 
like those of a n soliton in S, which was discussed earlier. 

7. Conclusions 
We find intertwined planar solitons as possible defect 

states in nematics. They are walls with out of plane 
distortions associated with them. In unwound cholester- 
ics and nematics with high dielectric anisotropy, we have 
worked out the energetics of bend and twist solitons 
which connect the same base states. The problem of the 
elastic stability of a 2n: bend or splay soliton in S, and 
F N  due to a field and elastic anisotropy has been 
considered. We have also worked out the structure of a 
n: soliton in S, and S, phases near an S,-S, phase 
transition. 

Our thanks are due to K. A. Suresh and Sreejith 
Sukumaran for helpful comments. 
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